Eigenvectors and Eigenvalues (Basics)

1 Eigenvalues

Find the eigenvalue for the eigenvector listed below.
(Bonus: Also check that they are eigenvectors.)
(a) $\left[\begin{array}{ll}6 & 1 \\ 3 & 4\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{r}2 \\ -6\end{array}\right]$
(b) $\left[\begin{array}{rr}1 & 2 \\ -5 & -6\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{r}-2 \\ 5\end{array}\right]$
(c) $\left[\begin{array}{rr}4 & 2 \\ -3 & -3\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{r}-3 \\ 9\end{array}\right]$
(d) $\left[\begin{array}{rr}-1 & 3 \\ 2 & -2\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{l}-3 \\ -2\end{array}\right]$
(e) $\left[\begin{array}{rrr}1 & 1 & -6 \\ -1 & 2 & -9 \\ -1 & 2 & -6\end{array}\right] \mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$
(f) $\left[\begin{array}{rrr}1 & 6 & 9 \\ 0 & 3 & 3 \\ 1 & -1 & 2\end{array}\right] \mathbf{v}=\left[\begin{array}{r}-3 \\ -1 \\ 1\end{array}\right]$
(g) $\left[\begin{array}{rrr}-2 & 3 & 1 \\ -7 & 8 & 4 \\ 2 & -2 & 0\end{array}\right] \mathbf{v}=\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]$
(h) $\left[\begin{array}{rrr}5 & -9 & 2 \\ 8 & -8 & -6 \\ 3 & -3 & -3\end{array}\right] \mathbf{v}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$

2 EIGENVECTORS

Find the eigenvector for the eigenvalue listed below.
(a) $\left[\begin{array}{rr}-2 & -5 \\ 1 & -8\end{array}\right] \quad \lambda=-3$
(b) $\left[\begin{array}{rr}2 & -6 \\ -3 & -5\end{array}\right] \quad \lambda=-7$
(c) $\left[\begin{array}{rr}1 & -4 \\ 5 & 10\end{array}\right]$
$\lambda=6$
(d) $\left[\begin{array}{rr}6 & -2 \\ -2 & 6\end{array}\right] \quad \lambda=4$
(e) $\left[\begin{array}{llr}-4 & 5 & -7 \\ -3 & 4 & -5 \\ -2 & 1 & 1\end{array}\right] \lambda=-3$
(f) $\left[\begin{array}{rrr}2 & -2 & 6 \\ 7 & -2 & -4 \\ 2 & -2 & 3\end{array}\right] \lambda=3$
(g) $\left[\begin{array}{rrr}1 & -7 & 9 \\ 6 & 9 & 6 \\ 1 & 3 & -1\end{array}\right] \lambda=5$
(h) $\left[\begin{array}{rrr}-6 & 8 & -1 \\ -7 & 6 & 7 \\ -2 & 2 & 1\end{array}\right] \lambda=-1$

3 Characteristic Equations

Find the characteristic equation for the matrices below.
(Bonus: Compute eigenvalues and eigenvectors.)
(a) $\left[\begin{array}{rr}4 & 3 \\ 3 & -4\end{array}\right]$
(b) $\left[\begin{array}{rr}7 & 1 \\ -2 & 4\end{array}\right]$
(c) $\left[\begin{array}{rr}-1 & 5 \\ 3 & -3\end{array}\right]$
(d) $\left[\begin{array}{ll}6 & -3 \\ 4 & -1\end{array}\right]$
(e) $\left[\begin{array}{rrr}6 & 0 & 1 \\ 0 & -1 & 0 \\ 3 & 0 & 4\end{array}\right]$
(f) $\left[\begin{array}{rrr}3 & 0 & 2 \\ 0 & -1 & 4 \\ 1 & 0 & 4\end{array}\right]$
(g) $\left[\begin{array}{rrr}-1 & 4 & 2 \\ 0 & -1 & 0 \\ 5 & 0 & 2\end{array}\right]$
(h) $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 4 & 2 \\ 0 & 2 & 0\end{array}\right]$

4 Computing Powers Using Eigenvectors and Eigenvalues

The matrix T has $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ with $\lambda_{1}=1 ; \quad$ and $\mathbf{v}_{2}=\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$ with $\lambda_{2}=-\frac{1}{2} ; \quad$ and $\mathbf{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ with $\lambda_{3}={ }^{1 / 3} . \quad$ Compute:
(a) $\mathrm{T}^{n}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$
(b) $\mathrm{T}^{n}\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$
(c) $\mathrm{T}^{n}\left[\begin{array}{r}0 \\ -4 \\ 4\end{array}\right]$
(d) $\mathrm{T}^{n}\left[\begin{array}{r}0 \\ 0 \\ -5\end{array}\right]$
(e) $\mathrm{T}^{n}\left(\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]+\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]\right)$
(f) $\mathrm{T}^{n}\left(\left[\begin{array}{l}4 \\ 8 \\ 4\end{array}\right]+\left[\begin{array}{r}0 \\ 3 \\ -3\end{array}\right]\right)$
(g) $\mathrm{T}^{n}\left(\left[\begin{array}{l}4 \\ 8 \\ 4\end{array}\right]+\left[\begin{array}{r}0 \\ 3 \\ -3\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 8\end{array}\right]\right)$
(h) $\mathrm{T}^{n}\left[\begin{array}{l}1 \\ 4 \\ 2\end{array}\right]$

- We ended last week with the eig (<matrix>) command to compute eigenvalues and eigenvectors of a matrix.

```
>> [V, D] = eig( [ 1 1 - 1; 1 2 1; 1 0 3 ] )
V = D =
\begin{tabular}{rrrrrr}
0.8165 & 0.0000 & -0.7071 & 1.0000 & 0 & 0 \\
-0.4082 & -0.7071 & 0.0000 & 0 & 3.0000 & 0 \\
-0.4082 & -0.7071 & 0.7071 & 0 & 0 & 2.0000
\end{tabular}
```

The first output matrix, V, contains the eigenvectors as its columns (V for eigenVector). For example the first eigenvector of $\left[\begin{array}{rrr}1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$ is $\mathbf{v}_{1}=\left[\begin{array}{r}0.8165 \\ -0.4082 \\ -0.4082\end{array}\right]$, which we would probably write as $\left[\begin{array}{r}2 \\ -1 \\ -1\end{array}\right]$. MatLab divides to make its eigenvectors all have length 1.

The second output matrix, D , contains the eigenvalues along its main diagonal (D for $\underline{\text { Diagonal) in the same order }}$ as the eigenvectors in V. For example $\lambda_{1}=1$ is the eigenvalue for v_{1} above.

Note that if you do not include "[V, D] =" in the command, then MatLab gives only the eigenvalues. MatLab often overloads its functions like this, depending on how the results are caught... this evil can be very confusing.

- To compute the formula for $\mathrm{A}^{n} \mathbf{v}$, say $\left[\begin{array}{rrr}2 & 0 & -1 \\ 2 & 2 & 0 \\ -1 & 2 & 6\end{array}\right]^{n}\left[\begin{array}{r}3 \\ -12 \\ -9\end{array}\right]$, you first compute the eigenvalues and eigenvectors.

```
>> [V, D] = eig( [ 2 0 -1 ; 2 2 0 ; -1 2 6 ] )
```

Then compute the coefficients writing \mathbf{v} in terms of eigenvectors $\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots$

```
>> c = V \ [ 3 ; - 12 ; -9 ]
C =
    -9.7980
        7.3485
    -16.6132
>> c1v1 = c(1) * V (:, 1)
clvl =
    -4.0000
    -8.0000
    4 . 0 0 0 0
```

```
>> c2v2 = c(2) * V (:,2)
c2v2 =
    3.0000
    -6.0000
    3.0000
6 >> c3v3 = c(3) * V (:,3)
c3v3 =
    4 . 0 0 0 0
    2.0000
    -16.0000
```

The answer is given by $\mathrm{A}^{n} \mathbf{v}=\lambda_{1}^{n} c_{1} \mathbf{v}_{1}+\lambda_{2}^{n} c_{2} \mathbf{v}_{2}+\cdots \quad$ which in this case is

$$
\left[\begin{array}{rrr}
2 & 0 & -1 \\
2 & 2 & 0 \\
-1 & 2 & 6
\end{array}\right]^{n}\left[\begin{array}{r}
3 \\
-12 \\
9
\end{array}\right]=3^{n}\left[\begin{array}{r}
-4 \\
-8 \\
4
\end{array}\right]+1^{n}\left[\begin{array}{r}
3 \\
-6 \\
3
\end{array}\right]+6^{n}\left[\begin{array}{r}
4 \\
2 \\
-16
\end{array}\right]
$$

Note: A slightly slicker way to compute $c_{1} \mathbf{v}_{1}, c_{2} \mathbf{v}_{2}$, etc. is to use a matrix product to perform column operations.

```
>> CV = V * diag( V \ [ 3 ; -12 ; -9 ] )
CV =
    -4.0000 3.0000 4.0000
    -8.0000 -6.0000 2.0000
    4.0000 3.0000-16.0000
```

The MatLab command diag (<vector>) creates a matrix which has <vector> on the diagonal and 0 everywhere else.
Multiplying on the right by this matrix performs column operations - multiplying each column of V by the corresponding coefficient.

